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Abstract

Deep Neural Networks trained on academic datasets of-

ten fail when applied to the real world. These failures gener-

ally arise from unknown inputs that are not of interest to the

system. The mis-classification of these unknown inputs as

one of the known classes highlights the need for more robust

deep networks. The problem of identifying samples that are

not of interest to the system has previously been tackled by

either thresholding softmax, which by construction cannot

return none of the known classes itself, or by learning new

features for the unknown inputs using an additional back-

ground or garbage class. As demonstrated, both of these

approaches help but are generally insufficient when previ-

ously unseen classes are encountered. This paper overviews

our recent publication Reducing Network Agnostophobia,

NeurIPS 2018. The paper presented two novel loss functions

that effectively handle unseen classes while providing a new

measure for uncertainty. The ability to identify unknown

samples plays a crucial role in developing robust networks

that may be used in open-world problems. The paper also

introduced an evaluation metric that focused on comparing

performance of multiple approaches in an open-set setting.

1. Introduction

When deployed, detection systems are usually exposed

to many more instances of classes that are not of interest

than the classes of interest. These detection systems include

object detectors [5, 4, 15, 10, 14], face detectors [7], pedes-

trian detectors [18], etc. Interestingly, though each year

new state-of-the-art-algorithms emerge from each of these

domains, a crucial component of their architecture remains

unchanged – handling unwanted or unknown inputs. The

majority of detection approaches can be divided into two

modules, a localization module and a classification mod-

ule. While the localization module provides the bounding

box for a detection, the classification module decides what

object has been detected. Almost all state-of-the-art object

detectors use deep networks for these modules. Most com-

monly, during training the classification network includes

a background class to identify a region as not having an

object of interest. In [2], we provide a visual understanding

of why the background class approach is insufficient when

handling unknown samples and propose novel loss functions

that constitute a viable substitution.

In order to better understand the problem, let us assume

Y ⊂ N be the infinite label space of all classes. This label

space contains the known classes of interest (C) and the

unknown classes (U = Y \ C). While the known classes of

interest are the classes the network is trained to identify, the

unknown classes are the classes the network is supposed to

reject as none of the known classes. Since Y is infinite and

C is finite, U is also infinite. The set U is further divided as:

1. B ⊂ U : The background, garbage, or known unknown

classes. Since U is infinitely large, during training only

a small subset B can be used.

2. A = U \ B = Y \ (C ∪ B): The unknown unknown

classes, which represent the rest of the infinite space

for U . Samples of these classes are not available during

training, but only occur at test time.

Let the samples that belong to B and were seen during

training be depicted as D′

b
and the ones seen during testing

depicted as Db. Similarly, the samples seen during testing be-

longing to A are represented as Da. The samples belonging

to the known classes of interest C, seen during training and

testing are represented as D′

c and Dc, respectively. Finally,

the unknown test samples are Du = Db ∪ Da.

Rather than rejecting unknown samples x ∈ Du, the two

novel loss functions develop deep feature representations

that are more robust to unknown inputs. When training the

models with background samples D′

b
, in contrast to common

approaches, our loss functions do not rely on an addition-

al softmax output for the background class. Instead, they

yield networks where thresholding softmax scores is more

effective at rejecting unknown samples x ∈ Du than using a

dedicated background class. The novel uncertainty measure

combines properties of the learned deep features and the

softmax scores to provide robust networks. Inspired from

real-world requirements of detectors, we also propose a new

evaluation metric for comparing performances of different

approaches under the presence of unknown samples.
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Figure 1: 2D LENET++ RESPONSES TO KNOWN AND UNKNOWN SAMPLES. The network in (a) was only trained to classify the

10 MNIST classes (D′

c) using softmax, while the networks in (b) and (c) added NIST letters [6] as known unknown samples (D′

b) trained

with an additional background class or the novel Objectosphere loss, respectively. In the feature representation plots on top, colored dots

represent test samples from the ten MNIST classes (Dc), while black dots represent samples from the previously unseen Devanagari [11]

dataset (Da), and the dashed gray-white lines indicate class borders where softmax scores for neighboring classes are equal. [2] addresses

how to improve recognition by reducing the overlap of network features from known samples Dc with features from unknown samples Du.

The figures in the bottom are histograms of softmax probability values for samples of Dc and Da with a logarithmic vertical axis. For known

samples Dc the probability of the correct class is used, while for samples of Da the maximum probability of any known class is taken. In an

application, a score threshold θ should be chosen to optimally separate unknown from known samples. Unfortunately, such a threshold is

difficult to find for either (a) or (b), a better separation is achieved with the Objectosphere loss (c). The proposed Open-Set Classification

Rate (OSCR) curve in (d) depicts the high accuracy of the Objectosphere approach even at a low false positive rate, where competitive

algorithms such as OpenMax [1] fail.

2. Approach

One of the limitations of training with a separate back-

ground class is that the features of all unknown samples are

required to gather in one region of the feature space. This re-

striction is independent of the similarity that an input might

have to one of the known classes. In Fig. 1(a), from the

depiction of the test set of MNIST [8] and samples from

the Devanagari dataset [11], we observe that magnitudes for

unknown samples in deep feature space are often lower than

those of known samples. This observation leads us to be-

lieve that the magnitude of the deep feature vector captures

information about a sample being unknown. We exploit

and exaggerate this property to develop a network where for

x ∈ D′

b
we reduce the deep feature magnitude (‖F (x)‖) at

the network layer prior to the logit layer and, therewith, max-

imize entropy of the softmax scores in order to separate them

from known samples. Unlike the background class approach,

this approach allows the network to have unknown samples

that share features with known classes as long as they have

a small feature magnitude. It may also allow the network

to focus learning capacity to respond to the known classes

instead of spending effort in learning specific features for

unknown samples. This in achieved in two stages.

2.1. Entropic Open­Set Loss

First, the Entropic Open-Set loss aims to maximize en-

tropy of unknown samples by making their softmax response

uniform across classes. This means, while we keep the

softmax loss calculation untouched for samples of D′

c, we

modify it for training with the samples from D′

b
seeking

to equalize their logit values lc, which will result in equal

softmax scores Sc. The intuition here is that if an input is

unknown, we know nothing about what classes it relates to

or what features we want it to have and, hence, we want the

maximum entropy distribution of uniform probabilities over

the known classes. Let Sc be the softmax score as above, the

Entropic Open-Set loss JE is defined as:

JE(x) =







− logSc(x) if x ∈ D′

c is from class c

− 1

C

C
∑

c=1

logSc(x) if x ∈ D′

b

2.2. Objectosphere Loss

While the Entropic Open-Set loss produces a network

that provides a higher softmax entropy for the unknown

samples, there is often a modest overlap between the feature

magnitudes of known and unknown samples. This should

not be surprising as nothing is forcing known samples to

have a large feature magnitude or always force features of

unknown samples to be short. Thus, in the second stage

we attempt to put a distance margin (ξ) between them. In

particular, we seek to push known samples into what we call

the Objectosphere where they have large feature magnitude

and low entropy, i.e., we train the network to have a large

response to only known classes x ∈ D′

c while penalizing
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‖F (x)‖ for x ∈ D′

b
to minimize feature length for unknown

samples. Formally, the Objectosphere loss is calculated as:

JR = JE + λ

{

max(ξ − ‖F (x)‖, 0)2 if x ∈ D′

c

‖F (x)‖2 if x ∈ D′

b

The above formalization both penalizes samples of the

known classes if their feature magnitude is inside the bound-

ary of the Objectosphere, and samples of unknown classes if

their magnitude is not vanishing. Note that larger ξ values

will generally scale up deep features, including the unknown

samples, but what matters is the overall separation.

Finally, instead of thresholding just on the final softmax

score Sc(x) of the network, one can exploit the fact that

the known and unknown samples have different deep feature

magnitudes which may be multiplied with the softmax scores

to obtain the Scaled Objectosphere score: Sc(x) · ‖F (x)‖.

Thresholding this product seems to be more reasonable and

justifiable. Theorems and related proofs for the Entropic

Open-Set and the Objectosphere loss may be found in [2].

3. Evaluating Open-Set Systems

An open-set system has a two-fold goal, it needs to cor-

rectly classify samples from known classes Dc while reject-

ing samples belonging to unknown classes Du. This makes

evaluating open-set problems more complex. We briefly dis-

cuss a few important traits for such an evaluation. The sys-

tem needs to be evaluated separately for unknwons Du and

knowns Dc. Considering all unknown samples as a separate

class and reporting accuracy on all the combined classes may

not provide a clear indication of the system’s performance in

both closed and open-set conditions. Moreover, systems are

generally deployed at a particular operating point, therefore

rather than comparing algorithms with overall accuracy, per-

formance needs to be evaluated at separate operating points.

For such an evaluation, the choice of the operating point

plays a key role. For example, softmax confidence scores

cannot serve as operating points because they are incompa-

rable across different systems. In order to provide a unified

measure of performance, the Area Under the Curve (AUC)

is an acceptable measure only as long as it is calculated for

a monotonic curve. Sadly, the popularly reported precision-

recall (PR) curve is non-monotonic and, hence, its AUC is

not dependable. The shortcomings of various evaluation

metric such as the AUC of the PR curve, Recall@K and the

Accuracy vs. Confidence curve are discussed in [2].

To properly address the evaluation of an open-set sys-
tem, we introduce the Open-Set Classification Rate (OSCR)
curve as shown in Fig. 1(d), which is an adaptation of the
Detection and Identification Rate (DIR) curve used in open-
set face recognition [12]. For evaluation, we split the test
samples into samples from known classes Dc and samples
from unknown classes Du. Let θ be a score threshold. For
samples from Dc, we calculate the Correct Classification

Rate (CCR) as the fraction of the samples where the correct
class ĉ has maximum probability, which needs to be greater
than θ. We compute the False Positive Rate (FPR) as the
fraction of samples from Du that are classified as any known
class c ∈ C with a probability greater than θ:

FPR(θ)=

∣

∣{x ∈ Da | max
c

P (c | x) ≥ θ}
∣

∣

|Da|

CCR(θ)=

∣

∣{x ∈ Dc | argmax
c

P (c | x) = ĉ ∧ P (ĉ | x) > θ}
∣

∣

|Dc|

Finally, for the OSCR curve we plot CCR versus FPR,

varying the probability threshold θ values from largest to

smallest from left to right. For the smallest θ, the CCR

is identical to the closed-set classification accuracy on Dc.

OSCR is not prone to any of the issues discussed in [2] and,

hence, is ideal for evaluating open-set systems.

4. Conclusion

Our approaches exploit the default response of a net-

work to unknown samples and provides a better separation

between Du and Dc. As supported by the evaluation in

Fig. 1(d), this separation results in networks that are much

more robust to Du. Further experiments on datasets such as

CIFAR and architectures such as ResNet-18 demonstrate [2]

that the approach may also be successfully applied to other

datasets and higher dimensional feature spaces. While there

was considerable prior work on open set, rejection, out-of-

distribution detection, or uncertainty estimation, our work

[2] presents the first significant and theoretically grounded

steps to an improved network representation for addressing

samples of unknown classes. Though traditionally softmax

has been used as a uncertainty score, our ability to differenti-

ate unknown (Du) from known samples (Dc) based on the

deep feature magnitude provides a better measure of uncer-

tainty. The benefits of this new measure can be witnessed by

the success of the Scaled Objectosphere approach as seen in

the additional experiments [2].

The improved uncertainty estimation provides more ro-

bust deep networks that are not drastically affected in per-

formance when ported from lab environments into the real

world where the identification of unknown samples is of ut-

most importance. While there has been significant progress

in zero-shot, one-shot, few-shot, and incremental learning

[9, 17, 3, 13, 16], if systems incorrectly but confidently clas-

sify unknown samples as one of the known classes, there is

no reason for a system to consider learning these samples

as new classes. This means that open-world systems need

to have the ability to know that they do not know. Systems

that are able to identify unknown are more robust in the real

world and also have the ability to learn novel classes using

concepts such as incremental learning.
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